Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 158
Filter
1.
Journal of Southern Medical University ; (12): 590-596, 2023.
Article in Chinese | WPRIM | ID: wpr-986966

ABSTRACT

OBJECTIVE@#To investigate the effect of electroacupuncture on osteoarthritis in rats and explore the possible mechanism.@*METHODS@#Thirty SD rats were randomly divided into osteoarthritis model group, electro-acupuncture group and control group (n=10), and in the former two groups, early osteoarthritis was induced using a modified DMM surgical modeling method. After successful modeling, the rats in the electro-acupuncture group were treated with electro-acupuncture at bilateral "Housanli" and "Anterior knee point". Behavioral tests of the rats were performed and scored using the LequesneMG scale. Subchondral bone degeneration was observed in each group, and serum levels of IL-1β, ADAMTS-7, MMP-3 and COMP were measured using ELISA. The mRNA and protein expressions of IL-1β, Wnt-7B, β-catenin, ADAMTS-7, and MMP-3 in the cartilage tissue of the knee joints were detected using RT-PCR and Western blotting.@*RESULTS@#In behavioral tests, the rats in the model and electroacupuncture groups had significantly higher LequesneMG scores after modeling than those in the control group (P < 0.05). After 20 days of treatment, LequesneMG scores were significantly lowered in rats in the electroacupuncture as compared with the model rats (P < 0.05). Imaging examination revealed obvious subchondral bone damage in both the electroacupuncture group and the model group, but the damages were significantly milder with former group. Compared with the model rats, the rats receiving electroacupuncture had significantly lower serum levels of IL-1β, ADAMTS-7, MMP-3 and COMP (P < 0.05) with also lower expressions of IL-1β, Wnt-7B, β-catenin, ADAMTS-7 and MMP-3 in the cartilage tissues at both the mRNA and protein levels (P < 0.05).@*CONCLUSION@#Electroacupuncture can alleviate joint pain and improve subchondral bone damage in rats with osteoarthritis by reducing IL-1β levels in the joint cartilage tissue and serum to alleviate joint inflammation and by reducing such cytokines as ADAMTS-7 and MMP-3 via regulating the Wnt-7B/β-catenin signaling pathway.


Subject(s)
Rats , Animals , Electroacupuncture , Matrix Metalloproteinase 3/metabolism , Rats, Sprague-Dawley , beta Catenin/metabolism , Osteoarthritis/metabolism , Wnt Signaling Pathway , Cartilage, Articular , Inflammation/metabolism
2.
Journal of Southern Medical University ; (12): 568-576, 2023.
Article in Chinese | WPRIM | ID: wpr-986963

ABSTRACT

OBJECTIVE@#To investigate the effect of Akt2 inhibitor on macrophage polarization in the periapical tissue in a rat model of periapical inflammation.@*METHODS@#Rat models of periapical inflammation were established in 28 normal SD rats by opening the pulp cavity of the mandibular first molars, followed by injection of normal saline and Akt2 inhibitor into the left and right medullary cavities, respectively. Four rats without any treatment served as the healthy control group. At 7, 14, 21 and 28 days after modeling, 7 rat models and 1 control rat were randomly selected for observation of inflammatory infiltration in the periapical tissues by X-ray and HE staining. Immunohistochemistry was used to detect the expression and localization of Akt2, macrophages and the inflammatory mediators. RT-PCR was performed to detect the mRNA expressions of Akt2, CD86, CD163, inflammatory mediators, miR-155-5p and C/EBPβ to analyze the changes in macrophage polarization.@*RESULTS@#X-ray and HE staining showed that periapical inflammation was the most obvious at 21 days after modeling in the rats. Immunohistochemistry and RT-PCR showed that compared with those in the control rats, the expressions of Akt2, CD86, CD163, miR-155-5p, C/EBPβ, and IL-10 increased significantly in the rat models at 21 days (P < 0.05). Compared with saline treatment, treatment with the Akt2 inhibitor significantly decreased the expression levels of Akt2, CD86, miR-155-5p and IL-6 and the ratio of CD86+M1/CD163+M2 macrophages (P < 0.05) and increased the expression levels of CD163, C/EBPβ and IL-10 in the rat models (P < 0.05).@*CONCLUSION@#Inhibition of Akt2 can delay the progression of periapical inflammation in rats and promote M2 macrophage polarization in the periapical inflammatory microenvironment possibly by reducing miR-155-5p expression and activating the expression of C/EBPβ in the Akt signaling pathway.


Subject(s)
Rats , Animals , Proto-Oncogene Proteins c-akt/metabolism , MicroRNAs/genetics , Interleukin-10 , Rats, Sprague-Dawley , Macrophages/metabolism , Inflammation/metabolism
3.
China Journal of Chinese Materia Medica ; (24): 1760-1769, 2023.
Article in Chinese | WPRIM | ID: wpr-981393

ABSTRACT

The present study aimed to investigate the effect of diosgenin on mammalian target of rapamycin(mTOR), fatty acid synthase(FASN), hypoxia inducible factor-1α(HIF-1α), and vascular endothelial growth factor A(VEGFA) expression in liver tissues of rats with non-alcoholic fatty liver disease(NAFLD) and explore the mechanism of diosgenin on lipogenesis and inflammation in NAFLD. Forty male SD rats were divided into a normal group(n=8) fed on the normal diet and an experimental group(n=32) fed on the high-fat diet(HFD) for the induction of the NAFLD model. After modeling, the rats in the experimental group were randomly divided into an HFD group, a low-dose diosgenin group(150 mg·kg~(-1)·d~(-1)), a high-dose diosgenin group(300 mg·kg~(-1)·d~(-1)), and a simvastatin group(4 mg·kg~(-1)·d~(-1)), with eight rats in each group. The drugs were continuously given by gavage for eight weeks. The levels of triglyceride(TG), total cholesterol(TC), low-density lipoprotein cholesterol(LDL-C), alanine transaminase(ALT), and aspartate transaminase(AST) in the serum were detected by the biochemical method. The content of TG and TC in the liver was detected by the enzyme method. Enzyme-linked immunosorbent assay(ELISA) was used to measure interleukin 1β(IL-1β) and tumor necrosis factor α(TNF-α) in the serum. Lipid accumulation in the liver was detected by oil red O staining. Pathological changes of liver tissues were detected by hematoxylin-eosin(HE) staining. The mRNA and protein expression levels of mTOR, FASN, HIF-1α, and VEGFA in the liver of rats were detected by real-time fluorescence-based quantitative polymerase chain reaction(PCR) and Western blot, respectively. Compared with the normal group, the HFD group showed elevated body weight and levels of TG, TC, LDL-C, ALT, AST, IL-1β, and TNF-α(P<0.01), increased lipid accumulation in the liver(P<0.01), obvious liver steatosis, up-regulated mRNA expression levels of mTOR, FASN, HIF-1α, and VEGFA(P<0.01), and increased protein expression levels of p-mTOR, FASN, HIF-1α, and VEGFA(P<0.01). Compared with the HFD group, the groups with drug treatment showed lowered body weight and levels of TG, TC, LDL-C, ALT, AST, IL-1β, and TNF-α(P<0.05, P<0.01), reduced lipid accumulation in the liver(P<0.01), improved liver steatosis, decreased mRNA expression levels of mTOR, FASN, HIF-1α, and VEGFA(P<0.05, P<0.01), and declining protein expression levels of p-mTOR, FASN, HIF-1α, and VEGFA(P<0.01). The therapeutic effect of the high-dose diosgenin group was superior to that of the low-dose diosgenin group and the simvastatin group. Diosgenin may reduce liver lipid synthesis and inflammation and potentiate by down-regulating the mTOR, FASN, HIF-1α, and VEGFA expression, playing an active role in preventing and treating NAFLD.


Subject(s)
Rats , Male , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Vascular Endothelial Growth Factor A/metabolism , Tumor Necrosis Factor-alpha/metabolism , Cholesterol, LDL , Rats, Sprague-Dawley , Liver , Inflammation/metabolism , Diet, High-Fat/adverse effects , TOR Serine-Threonine Kinases/metabolism , RNA, Messenger/metabolism , Body Weight , Mammals
4.
China Journal of Chinese Materia Medica ; (24): 2426-2434, 2023.
Article in Chinese | WPRIM | ID: wpr-981319

ABSTRACT

Tripterygium glycosides liposome(TPGL) were prepared by thin film-dispersion method, which were optimized accor-ding to their morphological structures, average particle size and encapsulation rate. The measured particle size was(137.39±2.28) nm, and the encapsulation rate was 88.33%±1.82%. The mouse model of central nervous system inflammation was established by stereotaxic injection of lipopolysaccharide(LPS). TPGL and tripterygium glycosides(TPG) were administered intranasally for 21 days. The effects of intranasal administration of TPG and TPGL on behavioral cognitive impairment of mice due to LPS-induced central ner-vous system inflammation were estimated by animal behavioral tests, hematoxylin-eosin(HE) staining of hippocampus, real-time quantitative polymerase chain reaction(RT-qPCR) and immunofluorescence. Compared with TPG, TPGL caused less damage to the nasal mucosa, olfactory bulb, liver and kidney of mice administered intranasally. The behavioral performance of treated mice was significantly improved in water maze, Y maze and nesting experiment. Neuronal cell damage was reduced, and the expression levels of inflammation and apoptosis related genes [tumor necrosis factor-α(TNF-α), interleukin-1β(IL-1β), BCL2-associated X(Bax), etc.] and glial activation markers [ionized calcium binding adaptor molecule 1(IBA1) and glial fibrillary acidic protein(GFAP)] were decreased. These results indicated that liposome technique combined with nasal delivery alleviated the toxic side effects of TPG, and also significantly ameliorated the cognitive impairment of mice induced by central nervous system inflammation.


Subject(s)
Mice , Animals , Tripterygium , Liposomes , Glycosides/therapeutic use , Administration, Intranasal , Lipopolysaccharides , Central Nervous System , Cognitive Dysfunction/drug therapy , Inflammation/metabolism , Tumor Necrosis Factor-alpha/metabolism , Cardiac Glycosides
5.
Journal of Zhejiang University. Science. B ; (12): 632-649, 2023.
Article in English | WPRIM | ID: wpr-982404

ABSTRACT

Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia seen in clinical settings, which has been associated with substantial rates of mortality and morbidity. However, clinically available drugs have limited efficacy and adverse effects. We aimed to investigate the mechanisms of action of andrographolide (Andr) with respect to AF. We used network pharmacology approaches to investigate the possible therapeutic effect of Andr. To define the role of Andr in AF, HL-1 cells were pro-treated with Andr for 1 h before rapid electronic stimulation (RES) and rabbits were pro-treated for 1 d before rapid atrial pacing (RAP). Apoptosis, myofibril degradation, oxidative stress, and inflammation were determined. RNA sequencing (RNA-seq) was performed to investigate the relevant mechanism. Andr treatment attenuated RAP-induced atrial electrophysiological changes, inflammation, oxidative damage, and apoptosis both in vivo and in vitro. RNA-seq indicated that oxidative phosphorylation played an important role. Transmission electron microscopy and adenosine triphosphate (ATP) content assay respectively validated the morphological and functional changes in mitochondria. The translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) to the nucleus and the molecular docking suggested that Andr might exert a therapeutic effect by influencing the Keap1-Nrf2 complex. In conclusions, this study revealed that Andr is a potential preventive therapeutic drug toward AF via activating the translocation of Nrf2 to the nucleus and the upregulation of heme oxygenase-1 (HO-1) to promote mitochondrial bioenergetics.


Subject(s)
Animals , Rabbits , Atrial Fibrillation/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Signal Transduction , NF-E2-Related Factor 2/pharmacology , Molecular Docking Simulation , Oxidative Stress , Energy Metabolism , Mitochondria/metabolism , Inflammation/metabolism , Heme Oxygenase-1
6.
Chinese Journal of Cellular and Molecular Immunology ; (12): 649-655, 2023.
Article in Chinese | WPRIM | ID: wpr-981912

ABSTRACT

Inflammation underlies a wide variety of physiological and pathological processes, and plays a pivotal role in controlling pathogen infection. C1q/tumor necrosis factor (TNF) related proteins (CTRPs), a newly discovered adipokine family with conservative structure and wide distribution, has attracted increasing attention. The CTRP family consists of more than 15 members which fall into the characteristic C1q domain. Increasing studies have demonstrated that CTRPs are involved in the onset and development of inflammation and metabolism as well as related diseases, including myocardial infarction, sepsis and tumors. Here, we first clarified the characteristic domains of CTRPs, and then elucidated their roles in inflammatory-related diseases. Taken together, the information presented here provides new perspectives for therapeutic strategies to improve inflammatory and metabolic abnormalities.


Subject(s)
Humans , Complement C1q/metabolism , Tumor Necrosis Factor-alpha/metabolism , Inflammation/metabolism , Myocardial Infarction
7.
Chinese Journal of Cellular and Molecular Immunology ; (12): 633-637, 2023.
Article in Chinese | WPRIM | ID: wpr-981910

ABSTRACT

Objective To identify the relationship between nephritis activity, autophagy and inflammation in patients with SLE. Methods Western blot analysis was used to detect the expression of microtubule-associated protein 1 light chain 3 (LC3) and P62 in peripheral blood mononuclear cells (PBMCs) of SLE patients with lupus nephritis and non-lupus nephritis patients. Tumor necrosis factor α (TNF-α) and interferon γ (IFN-γ) in the serum of SLE patients were determined by ELISA. The correlation between LC3II/LC3I ratio and SLE disease activity score (SLEDAI), urinary protein, TNF-α and IFN-γ levels was analyzed by Pearson method. Results The expression of LC3 was increased and P62 was decreased in SLE patients. TNF-α and IFN-γ were increased in the serum of SLE patients. LC3II/LC3I ratio was positively correlated with SLEDAI (r=0.4560), 24 hour urine protein (r=0.3753), IFN-γ (r=0.5685), but had no correlation with TNF-α (r=0.04 683). Conclusion Autophagy is found in PBMCs of SLE, and the autophagy is correlated with renal damage and inflammation in patients with lupus nephritis.


Subject(s)
Humans , Tumor Necrosis Factor-alpha/metabolism , Leukocytes, Mononuclear/metabolism , Autophagy-Related Proteins/metabolism , Lupus Nephritis/urine , Kidney , Interferon-gamma/metabolism , Inflammation/metabolism , Lupus Erythematosus, Systemic/metabolism
8.
Chinese Journal of Cellular and Molecular Immunology ; (12): 468-473, 2023.
Article in Chinese | WPRIM | ID: wpr-981887

ABSTRACT

Macrophage as a crucial component of innate immunity, plays an important role in inflammation and infection immunity. Notch signal pathway is a highly conserved pathway, which regulates cellular fate and participates in numerous pathological processes. At present, a lot of literature has confirmed the role of Notch signaling in regulating the differentiation, activation and metabolism of macrophage during inflammation and infection. This review focuses on how Notch signaling promotes macrophage pro-inflammatory and anti-infective immune function in different inflammatory and infectious diseases. In this regulation, Notch signaling interact with TLR signaling in macrophages or inflammatory-related cytokines including IL-6, IL-12, and TNF-α. Additionally, the potential application and challenges of Notch signaling as a therapeutic target against inflammation and infectious diseases are also discussed.


Subject(s)
Humans , Signal Transduction , Macrophages , Cytokines/metabolism , Inflammation/metabolism , Communicable Diseases , Receptors, Notch/metabolism
9.
Chinese Journal of Cellular and Molecular Immunology ; (12): 404-409, 2023.
Article in Chinese | WPRIM | ID: wpr-981880

ABSTRACT

Objective To investigate the ameliorative effect of salidroside on diabetes retinopathy (DR) rats and its mechanism. Methods Male SD rats were randomly divided into blank group, model group, low-dose and high-dose salidroside treatment groups. Except for the blank group, other groups were modeled by intraperitoneal injection of streptozotocin. After successful modeling, treatment groups were injected intraperitoneally with [50 mg/(kg.d)] and [100 mg/(kg.d)] salidroside respectively, for 4 weeks; the blank group and model group were injected with corresponding doses of saline. ELISA was used to measure the expression levels of antioxidant-related enzyme activity and inflammatory factors in blood glucose and serum of rats in each group. Retinal tissue lesions were detected by HE staining, and the expression of vascular endothelial growth factor (VEGF) and intercellular adhesion molecule 1 (ICAM-1) in retinal tissues were detected by immunohistochemical staining. Western blot analysis was used to detect the expression of phosphatidylinositol 3 kinase (PI3K) , nuclear factor κB p65 (NF-κB p65), phosphorylated p38 MAPK (p-p38 MAPK), and phosphorylated protein kinase B (p-AKT) proteins. Results Compared with model group, salidroside could significantly reduce blood glucose level and increase body mass in DR rats. The serum levels of superoxide dismutase (SOD) and catalase (CAT) were significantly increased, while the levels of malondialdehyde (MDA), tumor necrosis factor α (TNF-α), interleukin 6 (IL-6) and IL-1β were reduced. The protein expression of VEGF, ICAM-1, NF-κB p65 and p-p38 MAPK was significantly decreased, while the protein expression of PI3K and p-AKT was increased. Conclusion Salidroside can reduce DR in rats by inhibiting oxidative stress and immune inflammatory response, which may be related to the reduction of abnormal expression of VEGF and ICAM-1 and the activation of PI3K/AKT signaling pathway.


Subject(s)
Animals , Male , Rats , Blood Glucose , Diabetes Mellitus , Inflammation/metabolism , Intercellular Adhesion Molecule-1/metabolism , NF-kappa B/metabolism , Oxidative Stress , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Retinal Diseases , Tumor Necrosis Factor-alpha/metabolism , Vascular Endothelial Growth Factor A/metabolism
10.
Protein & Cell ; (12): 4-16, 2023.
Article in English | WPRIM | ID: wpr-971606

ABSTRACT

C-type lectins (CTLs) represent a large family of soluble and membrane-bound proteins which bind calcium dependently via carbohydrate recognition domains (CRDs) to glycan residues presented on the surface of a variety of pathogens. The deconvolution of a cell's glycan code by CTLs underpins several important physiological processes in mammals such as pathogen neutralization and opsonization, leukocyte trafficking, and the inflammatory response. However, as our knowledge of CTLs has developed it has become apparent that the role of this innate immune family of proteins can be double-edged, where some pathogens have developed approaches to subvert and exploit CTL interactions to promote infection and sustain the pathological state. Equally, CTL interactions with host glycoproteins can contribute to inflammatory diseases such as arthritis and cancer whereby, in certain contexts, they exacerbate inflammation and drive malignant progression. This review discusses the 'dual agent' roles of some of the major mammalian CTLs in both resolving and promoting infection, inflammation and inflammatory disease and highlights opportunities and emerging approaches for their therapeutic modulation.


Subject(s)
Animals , Humans , Inflammation/metabolism , Lectins, C-Type/metabolism , Mammals/metabolism , Membrane Proteins , Polysaccharides/metabolism
11.
Journal of Southern Medical University ; (12): 206-212, 2023.
Article in Chinese | WPRIM | ID: wpr-971516

ABSTRACT

OBJECTIVE@#To investigate the mechanism by which fibroblasts with high WNT2b expression causes intestinal mucosa barrier disruption and promote the progression of inflammatory bowel disease (IBD).@*METHODS@#Caco-2 cells were treated with 20% fibroblast conditioned medium or co-cultured with fibroblasts highly expressing WNT2b, with the cells without treatment with the conditioned medium and cells co-cultured with wild-type fibroblasts as the control groups. The changes in barrier permeability of Caco-2 cells were assessed by measuring transmembrane resistance and Lucifer Yellow permeability. In Caco-2 cells co-cultured with WNT2b-overexpressing or control intestinal fibroblasts, nuclear entry of β-catenin was detected with immunofluorescence assay, and the expressions of tight junction proteins ZO-1 and E-cadherin were detected with Western blotting. In a C57 mouse model of dextran sulfate sodium (DSS)-induced IBD-like enteritis, the therapeutic effect of intraperitoneal injection of salinomycin (5 mg/kg, an inhibitor of WNT/β-catenin signaling pathway) was evaluated by observing the changes in intestinal inflammation and detecting the expressions of tight junction proteins.@*RESULTS@#In the coculture system, WNT2b overexpression in the fibroblasts significantly promoted nuclear entry of β-catenin (P < 0.01) and decreased the expressions of tight junction proteins in Caco-2 cells; knockdown of FZD4 expression in Caco-2 cells obviously reversed this effect. In DSS-treated mice, salinomycin treatment significantly reduced intestinal inflammation and increased the expressions of tight junction proteins in the intestinal mucosa.@*CONCLUSION@#Intestinal fibroblasts overexpressing WNT2b causes impairment of intestinal mucosal barrier function and can be a potential target for treatment of IBD.


Subject(s)
Humans , Mice , Animals , Caco-2 Cells , beta Catenin/metabolism , Culture Media, Conditioned/pharmacology , Tight Junctions/metabolism , Intestinal Mucosa , Inflammatory Bowel Diseases , Tight Junction Proteins/metabolism , Inflammation/metabolism , Fibroblasts/metabolism , Mice, Inbred C57BL , Glycoproteins/metabolism , Wnt Proteins/pharmacology , Frizzled Receptors/metabolism
12.
Chinese Journal of Burns ; (6): 389-393, 2022.
Article in Chinese | WPRIM | ID: wpr-936024

ABSTRACT

Long-term poor dietary habits can cause changes in the intestinal flora, resulting in the production of a large number of lipopolysaccharide, increase intestinal mucosal permeability, and activate the entrance of a large number of inflammatory factors into the portal vein. In addition, a high carbohydrate diet can increase liver metabolic burden, increase mitochondrial oxidative phosphorylation, leading to oxidative stress, generate new fat during adenosine triphosphate synthesis, and thus resulting in ectopic fat accumulation, which further activate nuclear factor-κB signaling pathway and release inflam- matory factors such as tumor necrosis factor-α, interleukin-1β (IL-1β), IL-6, and so on. This leads to obesity and insulin resis- tance, ultimately triggering systemic low-grade inflammation. This article reviews the mechanism of poor dietary habits leading to systemic low-grade inflammation, the clinical and experimental research progress of keloids and systemic low-grade inflammation, the association between dietary habits and keloid constitution, and puts forward the hypothesis that poor dietary habits may lead to the occurrence and development of keloids.


Subject(s)
Humans , Diet/adverse effects , Feeding Behavior , Inflammation/metabolism , Keloid/physiopathology , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/metabolism
13.
Journal of Zhejiang University. Science. B ; (12): 481-501, 2022.
Article in English | WPRIM | ID: wpr-939821

ABSTRACT

Ulcerative colitis (UC) is a chronic and recurrent inflammatory bowel disease (IBD) that has become a major gastroenterologic problem during recent decades. Numerous complicating factors are involved in UC development such as oxidative stress, inflammation, and microbiota disorder. These factors exacerbate damage to the intestinal mucosal barrier. Spirulina platensis is a commercial alga with various biological activity that is widely used as a functional ingredient in food and beverage products. However, there have been few studies on the treatment of UC using S. platensis aqueous extracts (SP), and the underlying mechanism of action of SP against UC has not yet been elucidated. Herein, we aimed to investigate the modulatory effect of SP on microbiota disorders in UC mice and clarify the underlying mechanisms by which SP alleviates damage to the intestinal mucosal barrier. Dextran sulfate sodium (DSS) was used to establish a normal human colonic epithelial cell (NCM460) injury model and UC animal model. The mitochondrial membrane potential assay 3-‍‍(4,5-dimethylthiazol-2-yl)-2,‍5-diphenyltetrazolium bromide (MTT) and staining with Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) and Hoechst 33258 were carried out to determine the effects of SP on the NCM460 cell injury model. Moreover, hematoxylin and eosin (H&E) staining, transmission electron microscopy (TEM), enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qPCR), western blot, and 16S ribosomal DNA (rDNA) sequencing were used to explore the effects and underlying mechanisms of action of SP on UC in C57BL/6 mice. In vitro studies showed that SP alleviated DSS-induced NCM460 cell injury. SP also significantly reduced the excessive generation of intracellular reactive oxygen species (ROS) and prevented mitochondrial membrane potential reduction after DSS challenge. In vivo studies indicated that SP administration could alleviate the severity of DSS-induced colonic mucosal damage compared with the control group. Inhibition of inflammation and oxidative stress was associated with increases in the activity of antioxidant enzymes and the expression of tight junction proteins (TJs) post-SP treatment. SP improved gut microbiota disorder mainly by increasing antioxidant enzyme activity and the expression of TJs in the colon. Our findings demonstrate that the protective effect of SP against UC is based on its inhibition of pro-inflammatory cytokine overproduction, inhibition of DSS-induced ROS production, and enhanced expression of antioxidant enzymes and TJs in the colonic mucosal barrier.


Subject(s)
Animals , Mice , Antioxidants/pharmacology , Colitis/prevention & control , Colitis, Ulcerative/metabolism , Colon/metabolism , Dextran Sulfate/toxicity , Disease Models, Animal , Gastrointestinal Microbiome , Inflammation/metabolism , Mice, Inbred C57BL , Oxidative Stress , Reactive Oxygen Species/metabolism , Spirulina
14.
Journal of Southern Medical University ; (12): 463-472, 2022.
Article in Chinese | WPRIM | ID: wpr-936338

ABSTRACT

OBJECTIVE@#To investigate the effects of wogonoside on high glucose-induced dysfunction of human retinal microvascular endothelial cells (hRMECs) and streptozotocin (STZ)-induced diabetic retinopathy in rats and explore the underlying molecular mechanism.@*METHODS@#HRMECs in routine culture were treated with 25 mmol/L mannitol or exposed to high glucose (30 mmol/L glucose) and treatment with 10, 20, 30, 40 μmol/L wogonoside. CCK-8 assay and Transwell assay were used to examine cell proliferation and migration, and the changes in tube formation and monolayer cell membrane permeability were tested. ROS, NO and GSH-ST kits were used to evaluate oxidative stress levels in the cells. The expressions of IL-1β and IL-6 in the cells were examined with qRT-PCR and ELISA, and the protein expressions of VEGF, HIF-1α and SIRT1 were detected using Western blotting. We also tested the effect of wogonoside on retinal injury and expressions of HIF-1α, ROS, VEGF, TNF-α, IL-1β, IL-6 and SIRT1 proteins in rat models of STZ-induced diabetic retinopathy.@*RESULTS@#High glucose exposure caused abnormal proliferation and migration, promoted angiogenesis, increased membrane permeability (P < 0.05), and induced inflammation and oxidative stress in hRMECs (P < 0.05). Wogonoside treatment concentration-dependently inhibited high glucose-induced changes in hRMECs. High glucose exposure significantly lowered the expression of SIRT1 in hRMECs, which was partially reversed by wogonoside (30 μmol/L) treatment; interference of SIRT1 obviously attenuated the inhibitory effects of wogonoside against high glucose-induced changes in proliferation, migration, angiogenesis, membrane permeability, inflammation and oxidative stress in hRMECs. In rat models of STZ-induced diabetic retinopathy, wogonoside effectively suppressed retinal thickening (P < 0.05), alleviated STZ-induced retinal injury, and increased the expression of SIRT1 in the retinal tissues (P < 0.001).@*CONCLUSION@#Wogonoside alleviates retinal damage caused by diabetic retinopathy by up-regulating SIRT1 expression.


Subject(s)
Animals , Rats , Diabetes Mellitus/metabolism , Diabetic Retinopathy/metabolism , Endothelial Cells , Flavanones , Glucose/pharmacology , Glucosides , Inflammation/metabolism , Interleukin-6/metabolism , Neovascularization, Pathologic/metabolism , Reactive Oxygen Species/metabolism , Sirtuin 1/metabolism , Streptozocin/pharmacology , Vascular Endothelial Growth Factor A/metabolism
15.
Neuroscience Bulletin ; (6): 359-372, 2022.
Article in English | WPRIM | ID: wpr-929095

ABSTRACT

Irritable bowel syndrome is a gastrointestinal disorder of unknown etiology characterized by widespread, chronic abdominal pain associated with altered bowel movements. Increasing amounts of evidence indicate that injury and inflammation during the neonatal period have long-term effects on tissue structure and function in the adult that may predispose to gastrointestinal diseases. In this study we aimed to investigate how the epigenetic regulation of DNA demethylation of the p2x7r locus guided by the transcription factor GATA binding protein 1 (GATA1) in spinal astrocytes affects chronic visceral pain in adult rats with neonatal colonic inflammation (NCI). The spinal GATA1 targeting to DNA demethylation of p2x7r locus in these rats was assessed by assessing GATA1 function with luciferase assay, chromatin immunoprecipitation, patch clamp, and interference in vitro and in vivo. In addition, a decoy oligodeoxynucleotide was designed and applied to determine the influence of GATA1 on the DNA methylation of a p2x7r CpG island. We showed that NCI caused the induction of GATA1, Ten-eleven translocation 3 (TET3), and purinergic receptors (P2X7Rs) in astrocytes of the spinal dorsal horn, and demonstrated that inhibiting these molecules markedly increased the pain threshold, inhibited the activation of astrocytes, and decreased the spinal sEPSC frequency. NCI also markedly demethylated the p2x7r locus in a manner dependent on the enhancement of both a GATA1-TET3 physical interaction and GATA1 binding at the p2x7r promoter. Importantly, we showed that demethylation of the p2x7r locus (and the attendant increase in P2X7R expression) was reversed upon knockdown of GATA1 or TET3 expression, and demonstrated that a decoy oligodeoxynucleotide that selectively blocked the GATA1 binding site increased the methylation of a CpG island in the p2x7r promoter. These results demonstrate that chronic visceral pain is mediated synergistically by GATA1 and TET3 via a DNA-demethylation mechanism that controls p2x7r transcription in spinal dorsal horn astrocytes, and provide a potential therapeutic strategy by targeting GATA1 and p2x7r locus binding.


Subject(s)
Animals , Rats , Astrocytes/metabolism , DNA Demethylation , Epigenesis, Genetic , GATA1 Transcription Factor/metabolism , Inflammation/metabolism , Oligodeoxyribonucleotides/metabolism , Rats, Sprague-Dawley , Receptors, Purinergic P2X7/metabolism , Visceral Pain/metabolism
16.
Journal of Zhejiang University. Science. B ; (12): 265-285, 2022.
Article in English | WPRIM | ID: wpr-929058

ABSTRACT

Acetaminophen, also known as N-acetyl-p-aminophenol (APAP), is commonly used as an antipyretic and analgesic agent. APAP overdose can induce hepatic toxicity, known as acetaminophen-induced liver injury (AILI). However, therapeutic doses of APAP can also induce AILI in patients with excessive alcohol intake or who are fasting. Hence, there is a need to understand the potential pathological mechanisms underlying AILI. In this review, we summarize three main mechanisms involved in the pathogenesis of AILI: hepatocyte necrosis, sterile inflammation, and hepatocyte regeneration. The relevant factors are elucidated and discussed. For instance, N-acetyl-p-benzoquinone imine (NAPQI) protein adducts trigger mitochondrial oxidative/nitrosative stress during hepatocyte necrosis, danger-associated molecular patterns (DAMPs) are released to elicit sterile inflammation, and certain growth factors contribute to liver regeneration. Finally, we describe the current potential treatment options for AILI patients and promising novel strategies available to researchers and pharmacists. This review provides a clearer understanding of AILI-related mechanisms to guide drug screening and selection for the clinical treatment of AILI patients in the future.


Subject(s)
Animals , Humans , Mice , Acetaminophen/toxicity , Analgesics, Non-Narcotic/toxicity , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury, Chronic/pathology , Inflammation/metabolism , Liver/pathology , Mice, Inbred C57BL , Necrosis/pathology
17.
Chinese journal of integrative medicine ; (12): 330-338, 2022.
Article in English | WPRIM | ID: wpr-928946

ABSTRACT

OBJECTIVE@#To investigate whether Lingbao Huxin Pill (LBHX) protects against acute myocardial infarction (AMI) at the infarct border zone (IBZ) of myocardial tissue by regulating apoptosis and inflammation through the sirtuin 1 (SIRT1)-mediated forkhead box protein O1 (FOXO1) and nuclear factor-κ B (NF-κ B) signaling pathways.@*METHODS@#Six-week-old Wistar rats with normal diet were randomized into the sham, the model, Betaloc (0.9 mg/kg daily), LBHX-L (0.45 mg/kg daily), LBHX-M (0.9 mg/kg daily), LBHX-H (1.8 mg/kg daily), and LBHX+EX527 (0.9 mg/kg daily) groups according to the method of random number table, 13 in each group. In this study, left anterior descending coronary artery (LADCA) ligation was performed to induce an AMI model in rats. The myocardial infarction area was examined using a 2,3,5-triphenyltetrazolium chloride solution staining assay. A TdT-mediated dUTP nick-end labeling (TUNEL) assay was conducted to assess cardiomyocyte apoptosis in the IBZ. The histopathology of myocardial tissue at the IBZ was assessed with Heidenhain, Masson and hematoxylineosin (HE) staining assays. The expression levels of tumor necrosis factor α (TNF-α), interleukin (IL)-6, IL-1 β, and intercellular adhesion molecule-1 were measured using enzyme-linked immunosorbent assays (ELISAs). The mRNA expressions of SIRT1 and FOXO1 were detected by real-time qPCR (RT-qPCR). The protein expressions of SIRT1, FOXO1, SOD2, BAX and NF- κ B p65 were detected by Western blot analysis.@*RESULTS@#The ligation of the LADCA successfully induced an AMI model. The LBHX pretreatment reduced the infarct size in the AMI rats (P<0.01). The TUNEL assay revealed that LBHX inhibited cardiomyocyte apoptosis at the IBZ. Further, the histological examination showed that the LBHX pretreatment decreased the ischemic area of myocardial tissue (P<0.05), myocardial interstitial collagen deposition (P<0.05) and inflammation at the IBZ. The ELISA results indicated that LBHX decreased the serum levels of inflammatory cytokines in the AMI rats (P<0.05 or P<0.01). Furthermore, Western blot analysis revealed that the LBHX pretreatment upregulated the protein levels of SIRT1, FOXO1 and SOD2 (P<0.05) and downregulated NF- κ B p65 and BAX expressions (P<0.05). The RT-qPCR results showed that LBHX increased the SIRT1 mRNA and FOXO1 mRNA levels (P<0.05). These protective effects, including inhibiting apoptosis and alleviating inflammation in the IBZ, were partially abolished by EX527, an inhibitor of SIRT1.@*CONCLUSION@#LBHX could protect against AMI by suppressing apoptosis and inflammation in AMI rats and the SIRT1-mediated FOXO1 and NF- κ B signaling pathways were involved in the cardioprotection effect of LBHX.


Subject(s)
Animals , Rats , Apoptosis , Drugs, Chinese Herbal , Inflammation/metabolism , Myocardial Infarction/pathology , NF-kappa B/metabolism , Nerve Tissue Proteins , Rats, Wistar , Sirtuin 1/genetics
18.
Asian Journal of Andrology ; (6): 323-331, 2022.
Article in English | WPRIM | ID: wpr-928541

ABSTRACT

We investigated the therapeutic effects of superoxide dismutase (SOD) from thermophilic bacterium HB27 on chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) and its underlying mechanisms. A Sprague-Dawley rat model of CP/CPPS was prepared and then administered saline or Thermus thermophilic (Tt)-SOD intragastrically for 4 weeks. Prostate inflammation and fibrosis were analyzed by hematoxylin and eosin staining, and Masson staining. Alanine transaminase (ALT), aspartate transaminase (AST), serum creatinine (CR), and blood urea nitrogen (BUN) levels were assayed for all animals. Enzyme-linked immunosorbent assays (ELISA) were performed to analyze serum cytokine concentrations and tissue levels of malondialdehyde, nitric oxide, SOD, catalase, and glutathione peroxidase. Reactive oxygen species levels were detected using dichlorofluorescein diacetate. The messenger ribonucleic acid (mRNA) expression of tissue cytokines was analyzed by reverse transcription polymerase chain reaction (RT-PCR), and infiltrating inflammatory cells were examined using immunohistochemistry. Nuclear factor-κB (NF-κB) P65, P38, and inhibitor of nuclear factor-κBα (I-κBα) protein levels were determined using western blot. Tt-SOD significantly improved histopathological changes in CP/CPPS, reduced inflammatory cell infiltration and fibrosis, increased pain threshold, and reduced the prostate index. Tt-SOD treatment showed no significant effect on ALT, AST, CR, or BUN levels. Furthermore, Tt-SOD reduced inflammatory cytokine expression in prostate tissue and increased antioxidant capacity. This anti-inflammatory activity correlated with decreases in the abundance of cluster of differentiation 3 (CD3), cluster of differentiation 45 (CD45), and macrophage inflammatory protein 1α (MIP1α) cells. Tt-SOD alleviated inflammation and oxidative stress by reducing NF-κB P65 and P38 protein levels and increasing I-κBα protein levels. These findings support Tt-SOD as a potential drug for CP/CPPS.


Subject(s)
Animals , Humans , Male , Rats , Chronic Pain , Cytokines/metabolism , Fibrosis , Inflammation/metabolism , NF-kappa B/metabolism , Pelvic Pain/pathology , Prostatitis/metabolism , Rats, Sprague-Dawley , Superoxide Dismutase , Syndrome
19.
China Journal of Chinese Materia Medica ; (24): 2491-2499, 2022.
Article in Chinese | WPRIM | ID: wpr-928128

ABSTRACT

The present study investigated the therapeutic effect and mechanism of Di'ao Xinxuekang(DXXK) on non-alcoholic steatohepatitis(NASH) in mice. Sixty-five C57 BL/6 J mice were randomly divided into a normal group and an experimental group for model induction with the high-fat diet for 16 weeks. Then the mice in the experimental group were randomly divided into a model group, an atorvastatin group(4 mg·kg~(-1)·d~(-1)), and high-(200 mg·kg~(-1)·d~(-1)), medium-(60 mg·kg~(-1)·d~(-1)), and low-dose(20 mg·kg~(-1)·d~(-1)) DXXK groups, with 10 mice in each group. Drugs were administered by gavage for eight weeks. Serum lipid, liver lipid, serum alanine aminotransferase(ALT), aspartate aminotransferase(AST), malondialdehyde(MDA), superoxide dismutase(SOD), and glutathione reductase(GSH-Px) were determined. Interleukin-1β(IL-1β) and tumor necrosis factor-α(TNF-α) were measured by enzyme-linked immunosorbent assay(ELISA). The liver index was calculated. The liver pathological change and lipid accumulation were observed by HE and oil red O staining. The liver ultrastructure was observed by the transmission electron microscope. The mRNA and protein expression of nuclear factor-erythroid 2 related factor 2(Nrf2) and heme oxygenase-1(HO-1) was detected by real-time fluorescence-based quantitative PCR and Western blot, respectively. The results showed that compared with the normal group, the model group displayed serum lipid and liver lipid metabolism disorders, elevated transaminase, lipid deposition, steatosis, and inflammation, suggesting that the NASH model in mice was properly induced. Compared with the model group, the DXXK groups showed decreased serum lipid, liver lipid, ALT, AST, MDA, IL-1β, and TNF-α, increased SOD and GSH-Px, alleviated hepatic steatosis, ballooning, and inflammation, and up-regulated Nrf2 and HO-1 gene and protein expression. In conclusion, DXXK can significantly alleviate NASH in mice, which is related to the inhibition of oxidative stress and inflammatory damage by up-regulating the Nrf2/HO-1 signaling pathway.


Subject(s)
Animals , Mice , Drugs, Chinese Herbal , Inflammation/metabolism , Lipids , Liver , NF-E2-Related Factor 2/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Oxidative Stress , Signal Transduction , Superoxide Dismutase/metabolism , Tumor Necrosis Factor-alpha/metabolism
20.
China Journal of Chinese Materia Medica ; (24): 1307-1315, 2022.
Article in Chinese | WPRIM | ID: wpr-928057

ABSTRACT

This paper aims to study the effect of Xiangqin Jiere Granules(XQ) on lipid metabolism and chronic inflammation in different obesity model mice. The monosodium glutamate(MSG) obese mouse model was established by subcutaneous injection of MSG in newborn mice, and the high fat diet(HFD) obese mouse model was established by feeding adult mice with HFD. The normal mice were assigned into the control group; the MSG obese mice were assigned into MSG model group, XQ4.5 group(Xiangqin Jiere Granu-les, 4.5 g·kg~(-1)), XQ22.5 group(Xiangqin Jiere Granules, 22.5 g·kg~(-1)); the HFD obese mice were assigned into HFD model group, XQ4.5 group, and XQ22.5 group. The mice were intragastrically administrated with saline or XQ for 5 weeks. After that, the body weight, visceral fat mass, liver and thymus weight, and the organ indexes in each group were measured. The levels of triglyceride(TG), total cholesterol(TC), and low-density lipoprotein cholesterol(LDL-c) in serum and liver tissue were detected by the kits. The mRNA expression levels of acetyl CoA carboxylase 1(ACC1), fatty acid synthetase(FAS), diacylgycerol acyltransferase 1(DGAT1) and hepatic lipase(HTGL) involved in lipid metabolism in mouse liver tissue were detected by quantitative real-time PCR(qPCR). The protein levels of tumor necrosis factor-α(TNF-α) and interleukin-6(IL-6) in serum were detected by ELISA, and the mRNA levels of TNF-α and IL-6 in liver tissue were detected by qPCR. Compared with the control group, MSG and HFD mice showed increased body weight, abdominal circumference, Lee index and visceral fat mass as well as elevated levels of TG, TC, and LDL-c in serum. The model mice had up-regulated gene levels of ACC1, FAS and DGAT1 while down-regulated gene level of HTGL in the liver. Furthermore, the mRNA and protein levels of IL-6 increased in the model mice. Compared with the model mice, XQ treatment decreased the body weight, abdominal circumference, Lee index, and visceral fat mass, lowered the levels of TG, TC, and LDL-c in se-rum, down-regulated the gene levels of ACC1, FAS, and DGAT1 in liver tissue, up-regulated the gene level of HTGL, and down-regulated the mRNA and protein levels of IL-6. To sum up, XQ has good therapeutic effect on different obesity model mice. It can improve lipid metabolism and reduce fat accumulation in obese mice by regulating the enzymes involved in lipid metabolism, and alleviate obesity-related chronic low-grade inflammation.


Subject(s)
Animals , Mice , Inflammation/metabolism , Lipid Metabolism , Mice, Inbred C57BL , Mice, Obese , Obesity/genetics
SELECTION OF CITATIONS
SEARCH DETAIL